Radiation-Tolerant Reprogrammable FPGA for Digital Signal Processing Circuits, Phase I

Completed Technology Project (2008 - 2008)

Project Introduction

Field Programmable Gate Arrays are a widely used technology; however, they are generally limited in reprogrammability. Radiation hard, low power and high density ReProgramable FPGAs (RP-FPGAs) would be a tremendous asset in long duration missions. The ability to adapt to changeing mission profiles and on board capabilities is highly desirable. We herein propose to develop a RP-FPGA for flight use. In Phase I we will prove basic device concepts working with a leading FPGA manufacturer. In Phase II we will develop a viable demonstration prototype that will enable routine Phase III device manufacture.

Anticipated Benefits

Potential NASA Commercial Applications: FPGAs serve a wide range of applications as an alternative to ASICs. Highly desirable is a FPGA that could be reprogrammed. Product revisions are often constrained by past programmed logic or suffer from extra cost as programmed arrays must be replaced. A reprogrammable gate array would be a significant benefit to product designers and enable a new form of product upgrade to be easily carried out - hence offering opportunity to gain a significant market share.

Primary U.S. Work Locations and Key Partners

Radiation-Tolerant Reprogrammable FPGA for Digital Signal Processing Circuits, Phase I

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3

Small Business Innovation Research/Small Business Tech Transfer

Radiation-Tolerant Reprogrammable FPGA for Digital Signal Processing Circuits, Phase I

Completed Technology Project (2008 - 2008)

Organizations Performing Work	Role	Туре	Location
Langley Research Center(LaRC)	Lead Organization	NASA Center	Hampton, Virginia
Structured Materials Industries, Inc.	Supporting Organization	Industry	Piscataway, New Jersey

Primary U.S. Work Locations	
New Jersey	Virginia

Project Transitions

0

January 2008: Project Start

July 2008: Closed out

Closeout Summary: Radiation-Tolerant Reprogrammable FPGA for Digital Sign al Processing Circuits, Phase I Project Image

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Langley Research Center (LaRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Gary S Tompa

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Radiation-Tolerant Reprogrammable FPGA for Digital Signal Processing Circuits, Phase I

Completed Technology Project (2008 - 2008)

Technology Areas

Primary:

- TX02 Flight Computing and Avionics
 - □ TX02.1 Avionics
 Component Technologies
 - □ TX02.1.5 High Performance Field Programmable Gate Arrays

